This is the result of a couple of hours playing around trying to make an equity long-short algorithm. The returns do not survive costs/slippage, and it seems very sensitive to rebalancing frequency, but perhaps it's helpful to someone.

Clone Algorithm

895

Loading...

There was an error loading this backtest.
Retry

Backtest from
to
with
initial capital

Cumulative performance:

Algorithm
Benchmark

Custom data:

Total Returns

--

Alpha

--

Beta

--

Sharpe

--

Sortino

--

Max Drawdown

--

Benchmark Returns

--

Volatility

--

Returns | 1 Month | 3 Month | 6 Month | 12 Month |

Alpha | 1 Month | 3 Month | 6 Month | 12 Month |

Beta | 1 Month | 3 Month | 6 Month | 12 Month |

Sharpe | 1 Month | 3 Month | 6 Month | 12 Month |

Sortino | 1 Month | 3 Month | 6 Month | 12 Month |

Volatility | 1 Month | 3 Month | 6 Month | 12 Month |

Max Drawdown | 1 Month | 3 Month | 6 Month | 12 Month |

from pandas import Series, DataFrame import pandas as pd import statsmodels import statsmodels.api import datetime as dt import datetime as datetime import numpy as np from brokers.ib import VWAPBestEffort def initialize(context): context.benchmarkSecurity = symbol('IWM') schedule_function(func=regular_allocation, date_rule=date_rules.week_start(), time_rule=time_rules.market_open(minutes=1), half_days=True ) schedule_function(bookkeeping) set_slippage(slippage.FixedSlippage(spread=0.00)) set_commission(commission.PerShare(cost=0, min_trade_cost=None)) def bookkeeping(context, data): short_count = 0 long_count = 0 for sid in context.portfolio.positions: if context.portfolio.positions[sid].amount > 0.0: long_count = long_count + 1 if context.portfolio.positions[sid].amount < 0.0: short_count = short_count + 1 record(long_count=long_count) record(short_count=short_count) # gross leverage should be 2, net leverage should be 0! record(leverage=context.account.leverage) def handle_data(context, data): pass def add_ebit_ev(df): ev = df['enterprise_value'] ev[ev < 0.0] = 1.0 df['enterprise_value'] = ev df['ebit_ev'] = df['ebit'] / df['enterprise_value'] return df def before_trading_start(context): df = get_fundamentals( query(fundamentals.valuation.market_cap, fundamentals. valuation.shares_outstanding, fundamentals.income_statement.ebit, fundamentals.income_statement.ebit_as_of, fundamentals.valuation.market_cap, fundamentals.valuation.enterprise_value, fundamentals.valuation.enterprise_value_as_of, fundamentals.share_class_reference.symbol, fundamentals.company_reference.standard_name, fundamentals.operation_ratios.total_debt_equity_ratio ) .filter(fundamentals.operation_ratios.total_debt_equity_ratio != None) .filter(fundamentals.valuation.market_cap != None) .filter(fundamentals.valuation.shares_outstanding != None) .filter(fundamentals.company_reference.primary_exchange_id != "OTCPK") # no pink sheets .filter(fundamentals.company_reference.primary_exchange_id != "OTCBB") # no pink sheets .filter(fundamentals.asset_classification.morningstar_sector_code != None) # require sector .filter(fundamentals.share_class_reference.security_type == 'ST00000001') # common stock only .filter(~fundamentals.share_class_reference.symbol.contains('_WI')) # drop when-issued .filter(fundamentals.share_class_reference.is_primary_share == True) # remove ancillary classes .filter(((fundamentals.valuation.market_cap*1.0) / (fundamentals.valuation.shares_outstanding*1.0)) > 1.0) # stock price > $1 .filter(fundamentals.share_class_reference.is_depositary_receipt == False) # !ADR/GDR .filter(fundamentals.valuation.market_cap > 30000000) # cap > $30MM .filter(~fundamentals.company_reference.standard_name.contains(' LP')) # exclude LPs .filter(~fundamentals.company_reference.standard_name.contains(' L P')) .filter(~fundamentals.company_reference.standard_name.contains(' L.P')) .filter(fundamentals.balance_sheet.limited_partnership == None) # exclude LPs .order_by(fundamentals.valuation.market_cap.desc()) .offset(0) .limit(2500) ).T df = add_ebit_ev(df) context.longs = df.sort(['ebit_ev'],ascending=False)[0:100] context.shorts = df.sort(['ebit_ev'],ascending=True)[0:100] context.universe = np.union1d(context.longs.index.values, context.shorts.index.values) update_universe(context.universe) def regular_allocation(context, data): prices = history(500,'1d','price') longs = context.longs.index shorts = context.shorts.index # now allocate our longs and shorts # first sell anything we no longer want desiredSids = longs.union(shorts) holdingSids = Series(context.portfolio.positions.keys()) gettingTheBoot = holdingSids[holdingSids.isin(desiredSids) == False] for (ix,sid) in gettingTheBoot.iteritems(): order_target_percent(sid, 0.0) # calculate naive "beta" of each portfolio prices_longs = prices[longs.intersection(prices.columns)] prices_shorts = prices[shorts.intersection(prices.columns)] prices_spy = prices[context.benchmarkSecurity] rets_long_port = prices_longs.pct_change().sum(axis=1) rets_short_port = prices_shorts.pct_change().sum(axis=1) rets_spy_port = prices_spy.pct_change() beta_span = 250 benchVar = pd.stats.moments.ewmvar(rets_spy_port, span=beta_span)[beta_span:] long_cov = pd.stats.moments.ewmcov(rets_long_port, rets_spy_port, span=beta_span)[beta_span:] short_cov = pd.stats.moments.ewmcov(rets_short_port, rets_spy_port, span=beta_span)[beta_span:] long_beta = (long_cov / benchVar).iloc[-1] short_beta = (short_cov / benchVar).iloc[-1] beta_ratio = long_beta / short_beta target_lev_per_side = 2.0 scale = target_lev_per_side / (1 + beta_ratio) long_each = (scale * 1.0) / len(longs) short_each = (scale * beta_ratio) / len(shorts) # now buy our longs, scaled by ex ante beta for sid in longs: if sid in data: # this is so stupid order_target_percent(sid, long_each) # sell our shorts, scaled by ex ante beta for sid in shorts: if sid in data: # stupid order_target_percent(sid, -short_each) # our long-short portfolio might now have more gross leverage than 2.0, but # should have an expected beta of 0

We have migrated this algorithm to work with a new version of the Quantopian API. The code is different than the original version, but the investment rationale of the algorithm has not changed. We've put everything you need to know here on one page.