How to calculate RSI **average period**? please help

RSI Settings below:

RSI Type: E

Average period: 9

RSI period = 14

```
data = pd.read_csv(filepath)
def ATR(df, period, ohlc=['Open', 'High', 'Low', 'Close']):
"""
Function to compute Average True Range (ATR)
Args :
df : Pandas DataFrame which contains ['date', 'open', 'high', 'low', 'close', 'volume'] columns
period : Integer indicates the period of computation in terms of number of candles
ohlc: List defining OHLC Column names (default ['Open', 'High', 'Low', 'Close'])
Returns :
df : Pandas DataFrame with new columns added for
True Range (TR)
ATR (ATR_$period)
"""
atr = 'ATR_' + str(period)
# Compute true range only if it is not computed and stored earlier in the df
if not 'TR' in df.columns:
df['h-l'] = df[ohlc[1]] - df[ohlc[2]]
df['h-yc'] = abs(df[ohlc[1]] - df[ohlc[3]].shift())
df['l-yc'] = abs(df[ohlc[2]] - df[ohlc[3]].shift())
df['TR'] = df[['h-l', 'h-yc', 'l-yc']].max(axis=1)
df.drop(['h-l', 'h-yc', 'l-yc'], inplace=True, axis=1)
# Compute EMA of true range using ATR formula after ignoring first row
EMA(df, 'TR', atr, period, alpha=True)
return df
def SuperTrend(df, period, multiplier, ohlc=['Open', 'High', 'Low', 'Close']):
"""
Function to compute SuperTrend
Args :
df : Pandas DataFrame which contains ['date', 'open', 'high', 'low', 'close', 'volume'] columns
period : Integer indicates the period of computation in terms of number of candles
multiplier : Integer indicates value to multiply the ATR
ohlc: List defining OHLC Column names (default ['Open', 'High', 'Low', 'Close'])
Returns :
df : Pandas DataFrame with new columns added for
True Range (TR), ATR (ATR_$period)
SuperTrend (ST_$period_$multiplier)
SuperTrend Direction (STX_$period_$multiplier)
"""
ATR(df, period, ohlc=ohlc)
atr = 'ATR_' + str(period)
st = 'ST_' + str(period) + '_' + str(multiplier)
stx = 'STX_' + str(period) + '_' + str(multiplier)
"""
SuperTrend Algorithm :
BASIC UPPERBAND = (HIGH + LOW) / 2 + Multiplier * ATR
BASIC LOWERBAND = (HIGH + LOW) / 2 - Multiplier * ATR
FINAL UPPERBAND = IF( (Current BASICUPPERBAND < Previous FINAL UPPERBAND) or (Previous Close > Previous FINAL UPPERBAND))
THEN (Current BASIC UPPERBAND) ELSE Previous FINALUPPERBAND)
FINAL LOWERBAND = IF( (Current BASIC LOWERBAND > Previous FINAL LOWERBAND) or (Previous Close < Previous FINAL LOWERBAND))
THEN (Current BASIC LOWERBAND) ELSE Previous FINAL LOWERBAND)
SUPERTREND = IF((Previous SUPERTREND = Previous FINAL UPPERBAND) and (Current Close <= Current FINAL UPPERBAND)) THEN
Current FINAL UPPERBAND
ELSE
IF((Previous SUPERTREND = Previous FINAL UPPERBAND) and (Current Close > Current FINAL UPPERBAND)) THEN
Current FINAL LOWERBAND
ELSE
IF((Previous SUPERTREND = Previous FINAL LOWERBAND) and (Current Close >= Current FINAL LOWERBAND)) THEN
Current FINAL LOWERBAND
ELSE
IF((Previous SUPERTREND = Previous FINAL LOWERBAND) and (Current Close < Current FINAL LOWERBAND)) THEN
Current FINAL UPPERBAND
"""
# Compute basic upper and lower bands
df['basic_ub'] = (df[ohlc[1]] + df[ohlc[2]]) / 2 + multiplier * df[atr]
df['basic_lb'] = (df[ohlc[1]] + df[ohlc[2]]) / 2 - multiplier * df[atr]
# Compute final upper and lower bands
df['final_ub'] = 0.00
df['final_lb'] = 0.00
for i in range(period, len(df)):
df['final_ub'].iat[i] = df['basic_ub'].iat[i] if df['basic_ub'].iat[i] < df['final_ub'].iat[i - 1] or df['Close'].iat[i - 1] > df['final_ub'].iat[i - 1] else df['final_ub'].iat[i - 1]
df['final_lb'].iat[i] = df['basic_lb'].iat[i] if df['basic_lb'].iat[i] > df['final_lb'].iat[i - 1] or df['Close'].iat[i - 1] < df['final_lb'].iat[i - 1] else df['final_lb'].iat[i - 1]
# Set the Supertrend value
df[st] = 0.00
for i in range(period, len(df)):
df[st].iat[i] = df['final_ub'].iat[i] if df[st].iat[i - 1] == df['final_ub'].iat[i - 1] and df['Close'].iat[i] <= df['final_ub'].iat[i] else \
df['final_lb'].iat[i] if df[st].iat[i - 1] == df['final_ub'].iat[i - 1] and df['Close'].iat[i] > df['final_ub'].iat[i] else \
df['final_lb'].iat[i] if df[st].iat[i - 1] == df['final_lb'].iat[i - 1] and df['Close'].iat[i] >= df['final_lb'].iat[i] else \
df['final_ub'].iat[i] if df[st].iat[i - 1] == df['final_lb'].iat[i - 1] and df['Close'].iat[i] < df['final_lb'].iat[i] else 0.00
# Mark the trend direction up/down
df[stx] = np.where((df[st] > 0.00), np.where((df[ohlc[3]] < df[st]), 'down', 'up'), np.NaN)
# Remove basic and final bands from the columns
df.drop(['basic_ub', 'basic_lb', 'final_ub', 'final_lb'], inplace=True, axis=1)
df.fillna(0, inplace=True)
return df
```