I found the base somewhere on the web and extended it where needed. It really helped me to understand the indicators itself instead of blindly using Talib. Have fun with it

Peter

@author: Bruno Franca

@author: Peter Bakker

```
import numpy
import pandas as pd
import math as m
#Moving Average
def MA(df, n):
MA = pd.Series(pd.rolling_mean(df['Close'], n), name = 'MA_' + str(n))
df = df.join(MA)
return df
#Exponential Moving Average
def EMA(df, n):
EMA = pd.Series(pd.ewma(df['Close'], span = n, min_periods = n - 1), name = 'EMA_' + str(n))
df = df.join(EMA)
return df
#Momentum
def MOM(df, n):
M = pd.Series(df['Close'].diff(n), name = 'Momentum_' + str(n))
df = df.join(M)
return df
#Rate of Change
def ROC(df, n):
M = df['Close'].diff(n - 1)
N = df['Close'].shift(n - 1)
ROC = pd.Series(M / N, name = 'ROC_' + str(n))
df = df.join(ROC)
return df
#Average True Range
def ATR(df, n):
i = 0
TR_l = [0]
while i < df.index[-1]:
TR = max(df.get_value(i + 1, 'High'), df.get_value(i, 'Close')) - min(df.get_value(i + 1, 'Low'), df.get_value(i, 'Close'))
TR_l.append(TR)
i = i + 1
TR_s = pd.Series(TR_l)
ATR = pd.Series(pd.ewma(TR_s, span = n, min_periods = n), name = 'ATR_' + str(n))
df = df.join(ATR)
return df
#Bollinger Bands
def BBANDS(df, n):
MA = pd.Series(pd.rolling_mean(df['Close'], n))
MSD = pd.Series(pd.rolling_std(df['Close'], n))
b1 = 4 * MSD / MA
B1 = pd.Series(b1, name = 'BollingerB_' + str(n))
df = df.join(B1)
b2 = (df['Close'] - MA + 2 * MSD) / (4 * MSD)
B2 = pd.Series(b2, name = 'Bollinger%b_' + str(n))
df = df.join(B2)
return df
#Pivot Points, Supports and Resistances
def PPSR(df):
PP = pd.Series((df['High'] + df['Low'] + df['Close']) / 3)
R1 = pd.Series(2 * PP - df['Low'])
S1 = pd.Series(2 * PP - df['High'])
R2 = pd.Series(PP + df['High'] - df['Low'])
S2 = pd.Series(PP - df['High'] + df['Low'])
R3 = pd.Series(df['High'] + 2 * (PP - df['Low']))
S3 = pd.Series(df['Low'] - 2 * (df['High'] - PP))
psr = {'PP':PP, 'R1':R1, 'S1':S1, 'R2':R2, 'S2':S2, 'R3':R3, 'S3':S3}
PSR = pd.DataFrame(psr)
df = df.join(PSR)
return df
#Stochastic oscillator %K
def STOK(df):
SOk = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name = 'SO%k')
df = df.join(SOk)
return df
#Stochastic oscillator %D
def STO(df, n):
SOk = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name = 'SO%k')
SOd = pd.Series(pd.ewma(SOk, span = n, min_periods = n - 1), name = 'SO%d_' + str(n))
df = df.join(SOd)
return df
#Trix
def TRIX(df, n):
EX1 = pd.ewma(df['Close'], span = n, min_periods = n - 1)
EX2 = pd.ewma(EX1, span = n, min_periods = n - 1)
EX3 = pd.ewma(EX2, span = n, min_periods = n - 1)
i = 0
ROC_l = [0]
while i + 1 <= df.index[-1]:
ROC = (EX3[i + 1] - EX3[i]) / EX3[i]
ROC_l.append(ROC)
i = i + 1
Trix = pd.Series(ROC_l, name = 'Trix_' + str(n))
df = df.join(Trix)
return df
#Average Directional Movement Index
def ADX(df, n, n_ADX):
i = 0
UpI = []
DoI = []
while i + 1 <= df.index[-1]:
UpMove = df.get_value(i + 1, 'High') - df.get_value(i, 'High')
DoMove = df.get_value(i, 'Low') - df.get_value(i + 1, 'Low')
if UpMove > DoMove and UpMove > 0:
UpD = UpMove
else: UpD = 0
UpI.append(UpD)
if DoMove > UpMove and DoMove > 0:
DoD = DoMove
else: DoD = 0
DoI.append(DoD)
i = i + 1
i = 0
TR_l = [0]
while i < df.index[-1]:
TR = max(df.get_value(i + 1, 'High'), df.get_value(i, 'Close')) - min(df.get_value(i + 1, 'Low'), df.get_value(i, 'Close'))
TR_l.append(TR)
i = i + 1
TR_s = pd.Series(TR_l)
ATR = pd.Series(pd.ewma(TR_s, span = n, min_periods = n))
UpI = pd.Series(UpI)
DoI = pd.Series(DoI)
PosDI = pd.Series(pd.ewma(UpI, span = n, min_periods = n - 1) / ATR)
NegDI = pd.Series(pd.ewma(DoI, span = n, min_periods = n - 1) / ATR)
ADX = pd.Series(pd.ewma(abs(PosDI - NegDI) / (PosDI + NegDI), span = n_ADX, min_periods = n_ADX - 1), name = 'ADX_' + str(n) + '_' + str(n_ADX))
df = df.join(ADX)
return df
#MACD, MACD Signal and MACD difference
def MACD(df, n_fast, n_slow):
EMAfast = pd.Series(pd.ewma(df['Close'], span = n_fast, min_periods = n_slow - 1))
EMAslow = pd.Series(pd.ewma(df['Close'], span = n_slow, min_periods = n_slow - 1))
MACD = pd.Series(EMAfast - EMAslow, name = 'MACD_' + str(n_fast) + '_' + str(n_slow))
MACDsign = pd.Series(pd.ewma(MACD, span = 9, min_periods = 8), name = 'MACDsign_' + str(n_fast) + '_' + str(n_slow))
MACDdiff = pd.Series(MACD - MACDsign, name = 'MACDdiff_' + str(n_fast) + '_' + str(n_slow))
df = df.join(MACD)
df = df.join(MACDsign)
df = df.join(MACDdiff)
return df
#Mass Index
def MassI(df):
Range = df['High'] - df['Low']
EX1 = pd.ewma(Range, span = 9, min_periods = 8)
EX2 = pd.ewma(EX1, span = 9, min_periods = 8)
Mass = EX1 / EX2
MassI = pd.Series(pd.rolling_sum(Mass, 25), name = 'Mass Index')
df = df.join(MassI)
return df
#Vortex Indicator: http://www.vortexindicator.com/VFX_VORTEX.PDF
def Vortex(df, n):
i = 0
TR = [0]
while i < df.index[-1]:
Range = max(df.get_value(i + 1, 'High'), df.get_value(i, 'Close')) - min(df.get_value(i + 1, 'Low'), df.get_value(i, 'Close'))
TR.append(Range)
i = i + 1
i = 0
VM = [0]
while i < df.index[-1]:
Range = abs(df.get_value(i + 1, 'High') - df.get_value(i, 'Low')) - abs(df.get_value(i + 1, 'Low') - df.get_value(i, 'High'))
VM.append(Range)
i = i + 1
VI = pd.Series(pd.rolling_sum(pd.Series(VM), n) / pd.rolling_sum(pd.Series(TR), n), name = 'Vortex_' + str(n))
df = df.join(VI)
return df
#KST Oscillator
def KST(df, r1, r2, r3, r4, n1, n2, n3, n4):
M = df['Close'].diff(r1 - 1)
N = df['Close'].shift(r1 - 1)
ROC1 = M / N
M = df['Close'].diff(r2 - 1)
N = df['Close'].shift(r2 - 1)
ROC2 = M / N
M = df['Close'].diff(r3 - 1)
N = df['Close'].shift(r3 - 1)
ROC3 = M / N
M = df['Close'].diff(r4 - 1)
N = df['Close'].shift(r4 - 1)
ROC4 = M / N
KST = pd.Series(pd.rolling_sum(ROC1, n1) + pd.rolling_sum(ROC2, n2) * 2 + pd.rolling_sum(ROC3, n3) * 3 + pd.rolling_sum(ROC4, n4) * 4, name = 'KST_' + str(r1) + '_' + str(r2) + '_' + str(r3) + '_' + str(r4) + '_' + str(n1) + '_' + str(n2) + '_' + str(n3) + '_' + str(n4))
df = df.join(KST)
return df
#Relative Strength Index
def RSI(df, n):
i = 0
UpI = [0]
DoI = [0]
while i + 1 <= df.index[-1]:
UpMove = df.get_value(i + 1, 'High') - df.get_value(i, 'High')
DoMove = df.get_value(i, 'Low') - df.get_value(i + 1, 'Low')
if UpMove > DoMove and UpMove > 0:
UpD = UpMove
else: UpD = 0
UpI.append(UpD)
if DoMove > UpMove and DoMove > 0:
DoD = DoMove
else: DoD = 0
DoI.append(DoD)
i = i + 1
UpI = pd.Series(UpI)
DoI = pd.Series(DoI)
PosDI = pd.Series(pd.ewma(UpI, span = n, min_periods = n - 1))
NegDI = pd.Series(pd.ewma(DoI, span = n, min_periods = n - 1))
RSI = pd.Series(PosDI / (PosDI + NegDI), name = 'RSI_' + str(n))
df = df.join(RSI)
return df
#True Strength Index
def TSI(df, r, s):
M = pd.Series(df['Close'].diff(1))
aM = abs(M)
EMA1 = pd.Series(pd.ewma(M, span = r, min_periods = r - 1))
aEMA1 = pd.Series(pd.ewma(aM, span = r, min_periods = r - 1))
EMA2 = pd.Series(pd.ewma(EMA1, span = s, min_periods = s - 1))
aEMA2 = pd.Series(pd.ewma(aEMA1, span = s, min_periods = s - 1))
TSI = pd.Series(EMA2 / aEMA2, name = 'TSI_' + str(r) + '_' + str(s))
df = df.join(TSI)
return df
#Accumulation/Distribution
def ACCDIST(df, n):
ad = (2 * df['Close'] - df['High'] - df['Low']) / (df['High'] - df['Low']) * df['Volume']
M = ad.diff(n - 1)
N = ad.shift(n - 1)
ROC = M / N
AD = pd.Series(ROC, name = 'Acc/Dist_ROC_' + str(n))
df = df.join(AD)
return df
#Chaikin Oscillator
def Chaikin(df):
ad = (2 * df['Close'] - df['High'] - df['Low']) / (df['High'] - df['Low']) * df['Volume']
Chaikin = pd.Series(pd.ewma(ad, span = 3, min_periods = 2) - pd.ewma(ad, span = 10, min_periods = 9), name = 'Chaikin')
df = df.join(Chaikin)
return df
#Money Flow Index and Ratio
def MFI(df, n):
PP = (df['High'] + df['Low'] + df['Close']) / 3
i = 0
PosMF = [0]
while i < df.index[-1]:
if PP[i + 1] > PP[i]:
PosMF.append(PP[i + 1] * df.get_value(i + 1, 'Volume'))
else:
PosMF.append(0)
i = i + 1
PosMF = pd.Series(PosMF)
TotMF = PP * df['Volume']
MFR = pd.Series(PosMF / TotMF)
MFI = pd.Series(pd.rolling_mean(MFR, n), name = 'MFI_' + str(n))
df = df.join(MFI)
return df
#On-balance Volume
def OBV(df, n):
i = 0
OBV = [0]
while i < df.index[-1]:
if df.get_value(i + 1, 'Close') - df.get_value(i, 'Close') > 0:
OBV.append(df.get_value(i + 1, 'Volume'))
if df.get_value(i + 1, 'Close') - df.get_value(i, 'Close') == 0:
OBV.append(0)
if df.get_value(i + 1, 'Close') - df.get_value(i, 'Close') < 0:
OBV.append(-df.get_value(i + 1, 'Volume'))
i = i + 1
OBV = pd.Series(OBV)
OBV_ma = pd.Series(pd.rolling_mean(OBV, n), name = 'OBV_' + str(n))
df = df.join(OBV_ma)
return df
#Force Index
def FORCE(df, n):
F = pd.Series(df['Close'].diff(n) * df['Volume'].diff(n), name = 'Force_' + str(n))
df = df.join(F)
return df
#Ease of Movement
def EOM(df, n):
EoM = (df['High'].diff(1) + df['Low'].diff(1)) * (df['High'] - df['Low']) / (2 * df['Volume'])
Eom_ma = pd.Series(pd.rolling_mean(EoM, n), name = 'EoM_' + str(n))
df = df.join(Eom_ma)
return df
#Commodity Channel Index
def CCI(df, n):
PP = (df['High'] + df['Low'] + df['Close']) / 3
CCI = pd.Series((PP - pd.rolling_mean(PP, n)) / pd.rolling_std(PP, n), name = 'CCI_' + str(n))
df = df.join(CCI)
return df
#Coppock Curve
def COPP(df, n):
M = df['Close'].diff(int(n * 11 / 10) - 1)
N = df['Close'].shift(int(n * 11 / 10) - 1)
ROC1 = M / N
M = df['Close'].diff(int(n * 14 / 10) - 1)
N = df['Close'].shift(int(n * 14 / 10) - 1)
ROC2 = M / N
Copp = pd.Series(pd.ewma(ROC1 + ROC2, span = n, min_periods = n), name = 'Copp_' + str(n))
df = df.join(Copp)
return df
#Keltner Channel
def KELCH(df, n):
KelChM = pd.Series(pd.rolling_mean((df['High'] + df['Low'] + df['Close']) / 3, n), name = 'KelChM_' + str(n))
KelChU = pd.Series(pd.rolling_mean((4 * df['High'] - 2 * df['Low'] + df['Close']) / 3, n), name = 'KelChU_' + str(n))
KelChD = pd.Series(pd.rolling_mean((-2 * df['High'] + 4 * df['Low'] + df['Close']) / 3, n), name = 'KelChD_' + str(n))
df = df.join(KelChM)
df = df.join(KelChU)
df = df.join(KelChD)
return df
#Ultimate Oscillator
def ULTOSC(df):
i = 0
TR_l = [0]
BP_l = [0]
while i < df.index[-1]:
TR = max(df.get_value(i + 1, 'High'), df.get_value(i, 'Close')) - min(df.get_value(i + 1, 'Low'), df.get_value(i, 'Close'))
TR_l.append(TR)
BP = df.get_value(i + 1, 'Close') - min(df.get_value(i + 1, 'Low'), df.get_value(i, 'Close'))
BP_l.append(BP)
i = i + 1
UltO = pd.Series((4 * pd.rolling_sum(pd.Series(BP_l), 7) / pd.rolling_sum(pd.Series(TR_l), 7)) + (2 * pd.rolling_sum(pd.Series(BP_l), 14) / pd.rolling_sum(pd.Series(TR_l), 14)) + (pd.rolling_sum(pd.Series(BP_l), 28) / pd.rolling_sum(pd.Series(TR_l), 28)), name = 'Ultimate_Osc')
df = df.join(UltO)
return df
#Donchian Channel
def DONCH(df, n):
i = 0
DC_l = []
while i < n - 1:
DC_l.append(0)
i = i + 1
i = 0
while i + n - 1 < df.index[-1]:
DC = max(df['High'].ix[i:i + n - 1]) - min(df['Low'].ix[i:i + n - 1])
DC_l.append(DC)
i = i + 1
DonCh = pd.Series(DC_l, name = 'Donchian_' + str(n))
DonCh = DonCh.shift(n - 1)
df = df.join(DonCh)
return df
#Standard Deviation
def STDDEV(df, n):
df = df.join(pd.Series(pd.rolling_std(df['Close'], n), name = 'STD_' + str(n)))
return df
```